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A convex subset X of a linear topological space is called compactly convex if there is a con-
tinuous compact-valued map Φ: X → exp(X) such that [x, y] ⊂ Φ(x) ∪ Φ(y) for all x, y ∈ X.
We prove that each convex subset of the plane is compactly convex. On the other hand, the
space R3 contains a convex set that is not compactly convex. Each compactly convex subset X
of a linear topological space L has locally compact closure X̄ which is metrizable if and only if
each compact subset of X is metrizable.

Т. Банах, М. Митрофанов, A. Равский. Компактно выпуклые множества в линейных то-
пологических пространствах // Мат. Студiї. – 2012. – Т.37, №2. – C.161–173.

Выпуклое подмножество X линейного топологического пространства называется ком-
пактно выпуклым, если существует такое непрерывное компактно-значное отображение
Φ: X → exp(X), что [x, y] ⊂ Φ(x)∪Φ(y) для всех x, y ∈ X. Доказано, что каждое выпуклое
подмножество плоскости компактно выпукло. С другой стороны, пространство R3 содер-
жит выпуклое множество, которое не компактно выпукло. Каждое компактно выпуклое
подмножество X линейного топологического пространства L имеет локально компакт-
ное замыкание X̄, которое метризуемо тогда и только тогда, когда каждое компактное
подмножество в X метризуемо.

This paper is devoted to the so-called compactly convex sets in linear topological spaces.
A convex subset X of a linear topological space L is said to be compactly convex if there
is a continuous compact-valued map Φ assigning to each point x ∈ X a compact subset
Φ(x) ⊂ X so that [x, y] ⊂ Φ(x) ∪ Φ(y) for any points x, y ∈ X.

The continuity of a multi-valued map Φ is understood in the sense of the Vietoris topology
on the hyperspace exp(X) of all non-empty compact subsets of X. The sub-base of this
topology consists of the sets

〈U〉 = {K ∈ exp(X) : K ⊂ U} and 〉U〈= {K ∈ exp(X) : K ∩ U 6= ∅},

where U runs over open subsets of X. If the space X is metrizable by a metric ρ, then the
Vietoris topology on exp(X) is metrizable by the Hausdorff metric

ρH(A,B) = max
{

max
a∈A

ρ(a,B),max
b∈B

ρ(b, A)
}
.
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A map Φ: X → exp(X) is called upper semi-continuous if it is continuous with respect to
the upper topology on exp(X) generated by the base consisting of the sets 〈U〉 where U runs
over open subsets of X.

The interest in compactly convex sets came from the Theory of Retracts, where the
following problem still stands open: is the direct limit of stratifiable absolute retracts an
absolute retract for stratifiable spaces? For direct limits of metrizable absolute retracts a
affirmative answer to this problem was given in the paper [1]. The proof relied on the
notion of a compactly equi-connected space, that is a topological space X endowed with
an equiconnecting function λ : X×X× [0, 1]→ X such that for some upper semi-continuous
compact-valued map Φ: X ⇒ X the inclusion λ(x, y, t) ⊂ Φ(x)∪Φ(y) holds for all (x, y, t) ∈
X × X × [0, 1]. By an equiconnected function on X we understand a continuous map
λ : X × X × [0, 1] → X such that λ(x, y, 0) = x, λ(x, y, 1) = y and λ(x, x, t) = x for all
(x, y, t) ∈ X ×X × [0, 1].

In light of this notion it became interesting to detect compactly equiconnected spaces
among convex sets endowed with the natural equi-connected structure. This problem turned
to be nontrivial even in case of convex subsets of the plane.

Our principal result is

Theorem 1. Any convex subset of the plane is compactly convex.

This result is specific for at last two dimensional convex sets and in the dimension three
we have a counterexample.

Example 1. There is a convex subset X ⊂ R3 which is not compactly convex.

Proof. Identify R3 with the product C × R of the complex plane and the real line. Let
D = {z ∈ C : |z| < 1} be the open unit disc and T = {z ∈ C : |z| = 1} be its boundary.
Take any three pairwise disjoint dense subsets T0, TI , T1 in T. Let I = [0, 1] stand for the
unit interval.

We claim that the convex subset X = (D × I) ∪ (TI × I) ∪ (T0 × {0}) ∪ (T1 × {1}) of
C× R fails to be compactly convex.

Assuming that it is compactly convex, find a (upper semi-) continuous compact-valued
map Φ: X → exp(X) such that [x, y] ⊂ Φ(x) ∪ Φ(y). For every x ∈ T and t ∈ [0, 1]
let xt = (x, t). If x ∈ TI , then x0, x1 ∈ X and hence [x0, x1] ⊂ Φ(x0) ∪ Φ(x1). Then
x1/2 ∈ Φ(x0) ∪ Φ(x1) and thus TI = T 0

I ∪ T 1
I where T iI = {x ∈ TI : x1/2 ∈ Φ(xi)} for

i ∈ {0, 1}. Since T 0
I ∪ T 1

I is dense in T, there are i ∈ {0, 1} and a non-empty open set
U ⊂ T such that U ∩ T iI is dense in U . Take any point y ∈ U ∩ Ti. Since x1/2 ∈ Φ(x) for
every x ∈ U ∩ T iI , the upper semi-continuity of Φ implies that y1/2 ∈ Φ(y) ⊂ X, which is
a contradiction because y1/2 /∈ X.

Theorem 1 will be proven in several steps. Firstly for bounded convex sets, then for
locally compact, and finally using Sum Theorems, for all convex subsets of the plane. For
constructing continuous compact-valued maps with given properties we shall often use

Lemma 1. Let X be a normal topological space, C a contractible Tychonoff space, and
{Ui}i∈I a locally finite open cover of X. Let {Fi}i∈I be a family of closed subsets of X such
that Fi ⊂ Ui for all i ∈ I. Then for any continuous maps Φi : Ui → exp(C), i ∈ I, there is
a continuous map Φ: X → exp(C) such that Φi(x) ⊂ Φ(x) for all x ∈ Fi, i ∈ I.
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Proof. Using the normality of X, for every i ∈ I fix a continuous function λi : X → [0, 1]
such that λi(Fi) ⊂ {1} and λi(X \ Ui) ⊂ {0}.

Since C is contractible, there is a point c0 ∈ C and a homotopy h : C × [0, 1] → C
such that h(c, 0) = c0 and h(c, 1) = c for all c ∈ C. The homotopy h induces a homotopy
H : exp(C)× [0, 1]→ exp(C) acting by the formula: H(K, t) = {h(x, t) : x ∈ K} for (K, t) ∈
exp(C)× [0, 1].

Finally, define a map Φ: X → exp(C) letting

Φ(x) =
⋃
i∈I

H(Φi(x), λi(x)) for x ∈ X.

It is easy to check that this map is well-defined, continuous and has the desired property:
Φi(x) ⊂ Φ(x) for all x ∈ Fi, i ∈ I.

1. The compact convexity of bounded convex sets. The main result of this section is

Lemma 2. Each bounded convex subset of the plane is compactly convex.

Proof. Let C be a bounded convex subset of the plane, C̄ be its closure and ∂C be its
boundary in R2. If the boundary ∂C contains no non-degenerate interval, then the solution
is simple: just consider the compact-valued map Φ: x 7→ 1

2
x+ 1

2
C̄ and observe that it turns C

into a compactly convex set.
If ∂C contains non-degenerate intervals, then a more subtle construction will be supplied.

In the square C̄2 consider the set D = {(x, y) ∈ C̄2 : [x, y] ⊂ ∂C, x 6= y, x ∈ C} and let D̄
be the closure of D in C̄2 \ ∆, where ∆ = {(x, y) ∈ C̄2 : x = y} is the diagonal of C̄2. Let
D̄−1 = {(x, y) : (y, x) ∈ D̄}.

Next, consider a (continuous) function λ : D̄ → [0, 1] defined by λ(x, y) = |[x,y]∩C|
|[x,y]| , where

|[x, y]| is the length of the interval [x, y]. This function yields the relative length of the
intersection [x, y] ∩ C for a pair (x, y) ∈ D. Note that λ(x, y) = 1 for any (x, y) ∈ D̄ ∩ D̄−1.

It is well-known that for any continuous function α : B → [0, 1] defined on a closed subset
of a metrizable space M admits a continuous extension ᾱ : M → [0, 1] which is strictly
positive on the complement M \B.

Using this extension property of the metrizable space C̄2\∆, we find a continuous function
f : C̄2 \∆ such that

• f(x, y) = 1
2
λ(x, y) for any (x, y) ∈ D̄;

• f(x, y) = 1− 1
2
λ(y, x) for any (x, y) ∈ D̄−1;

• f(x, y) > 0 for any (x, y) ∈ C̄2 \ (∆ ∪ D̄ ∪ D̄−1).

Moreover, replacing f(x, y) with f(x,y)
f(x,y)+f(y,x)

, if necessary, we can additionally assume
that f(x, y) + f(y, x) = 1 for all (x, y) ∈ C̄2 \∆.

It follows from the choice of f that f(x, y) = 0 iff (x, y) ∈ D̄ and λ(x, y) = 0.
Now define a compact-valued map Φ: C → exp(C̄) by

Φ(x) = {x} ∪ {ty + (1− t)x : y ∈ C̄ \ {x}, 0 ≤ t ≤ f(x, y)}.

It is easy to check that Φ: C → exp(C̄) is a well-defined compact-valued map, continuous
with respect to the Vietoris topology on the hyperspace of C̄. The inclusion [x, y] ⊂ Φ(x) ∪
Φ(y) follows from the equality f(x, y) + f(y, x) = 1 holding for all x, y ∈ C̄2, x 6= y.
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Finally, let us show that Φ(x) ⊂ C for all x ∈ C. Take any y ∈ C̄ \ {x} and a positive
t ≤ f(x, y). We should show that ty + (1 − t)x ∈ C. First, we verify that t < 1. Assuming
that t = 1, we get f(x, y) = 1 and f(y, x) = 0 which implies (y, x) ∈ D̄ and λ(y, x) = 0.
Let (a, b) ∈ D be a pair so close to the pair (y, x) ∈ D̄ that the intersection [x, y] and [a, b]
contains a non-degenerate interval. Since a, x ∈ C, the length [y, x] ∩ C ⊃ [y, x] ∩ [a, x] is
strictly positive and thus λ(y, x) 6= 0, which is a contradiction.

Therefore, t < 1. If [x, y] 6⊂ ∂C, then ty+(1−t)x lies in the interior of C. Finally, consider
the case [x, y] ⊂ ∂C. Then t ≤ f(x, y) = 1

2
λ(x, y) and thus ty + (1− t)x ∈ [x, y] ∩ C.

2. The compact convexity of locally compact convex sets.

Proposition 1. Each locally compact σ-compact convex subset C of a linear topological
space L is compactly convex.

Proof. Since C is locally compact and σ-compact, we can write C as the sum C =
⋃
n∈ω Cn

of an increasing sequence of compacta such that each Cn lies in the interior Un+1 of Cn+1

in C. It will be convenient to put Cn = ∅ for n < 0. Since (Un+1 \ Cn−2)n∈ω is a locally
finite open cover of C, we may apply Lemma 1 to construct a continuous compact-valued
map Φ: C → exp(C) such that for every n ∈ ω and x ∈ Cn \Cn−1 the set Φ(x) contains the
set [Cn, Cn] =

⋃
a,b∈Cn

[a, b].
We claim that Φ witnesses the compact convexity of C. Indeed, given any points x, y ∈ C,

find a minimal n such that {x, y} ⊂ Cn. Then x or y belongs to Cn \ Cn−1. Without loss of
generality, x ∈ Cn \ Cn−1. Then Φ(x) ⊃ [Cn, Cn] and hence

[x, y] ⊂ [Cn, Cn] ⊂ Φ(x) ⊂ Φ(x) ∪ Φ(y).

We do not know if the σ-compactness is essential in the preceding proposition.

Question 1. Is any locally compact convex subset of a linear topological space compactly
convex?

3. A Subspace Theorem for compactly convex sets.

Theorem 2. A closed convex subset C of a compactly convex metrizable set X is compactly
convex.

Proof. Let Φ: X → exp(X) be a continuous compact-valued map witnessing the compact
convexity ofX. By the Dugundji Theorem ([4]), the closed convex set C is an absolute retract.
Consequently, there is a retraction r : X → C inducing a retraction exp(r) : exp(X) →
exp(C). Then the compact-valued map exp(r) ◦ Φ|C : C → exp(C) witnesses the compact
convexity of C.

We do not know if the metrizability is essential in the preceding proposition.

Question 2. Is any closed convex subset of a compactly convex set compactly convex?

4. Sum Theorems for compactly convex sets.

Theorem 3. Let P−, P+ be two closed half-spaces in a linear topological space L, intersecting
by a hyperplane l = P−∩P+. A convex subset C ⊂ L is compactly convex if the sets C ∩P−
and C ∩ P+ are compactly convex and there is a metrizable locally compact convex subset
C̃ ⊃ C such that C̃ ∩ l = C ∩ l.
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Proof. There is nothing to prove if C ⊂ C ∩ P− or C ⊂ C ∩ P+. So we assume that both
sets C \ P− and C \ P+ are nonempty, and so is the intersection C ∩ l.

Being convex closed subsets of the metrizable space C, the sets C ∩ P− and C ∩ P+ are
retracts in C, see [4]. This fact and the compact convexity of the sets C ∩ P− and C ∩ P+

allow us to construct a continuous map Ψ: C → exp(C) such that [x, y] ⊂ Ψ(x) ∪ Ψ(y) for
every points x, y ∈ C that both belong either to C ∩ P− or to C ∩ P+.

Being locally compact, the convex set C̃ can be written as the union C̃ =
⋃
n∈ω Cn of

a sequence of compact subsets Cn, n ∈ ω, such that C0 ∩ l 6= ∅ and each set Cn lies in the
interior of Cn+1 in C̃. It follows that for every n ∈ ω the set [Cn, Cn] = {(1 − t)a + tb : t ∈
[0, 1], a, b ∈ Cn} is compact and so is the intersection [Cn, Cn] ∩ l ⊂ C̃ ∩ l = C ∩ l.

Using Lemma 1 we can construct a continuous map Φ: C → exp(C) such that for every
x ∈ C
• Φ(x) ⊃ Ψ(x);
• Φ(x) ⊃ Ψ([Cn, Cn] ∩ l) provided x ∈ Cn \ Cn−1, n ∈ ω.
We claim that [x0, x1] ⊂ Φ(x0) ∪ Φ(x1) for any x0, x1 ∈ C. This is clear if both points

x0, x1 lie in C∩P− or C∩P+. So we assume that x0 ∈ C∩P− and x1 ∈ C∩P+. It follows that
the intersection [x0, x1] ∩ l contains some point z. The choice of the function Ψ guarantees
that [x0, z] ⊂ Ψ(x0) ∪Ψ(z) and [z, x1] ⊂ Ψ(z) ∪Ψ(x1).

Find a minimal n such that {x0, x1} ⊂ Cn. Then for some i ∈ {0, 1} the point xi belongs
to Cn \ Cn−1 and hence Φ(xi) ⊃ Ψ([Cn, Cn] ∩ l) ⊃ Ψ(z). Now we see that

[x0, x1] = [x0, z] ∪ [z, x1] ⊂ Ψ(x0) ∪Ψ(z) ∪Ψ(z) ∪Ψ(x1) ⊂
⊂ Φ(x0) ∪ Φ(xi) ∪ Φ(x1) = Φ(x0) ∪ Φ(x1).

Corollary 1. A convex subset C ⊂ R2 is compactly convex provided C is the union of two
closed convex compactly convex subsets whose intersection lies on a line.

Proof. Let C−, C+ be closed compactly convex subsets of C whose union coincides with C
and the intersection C− ∩ C+ lies on some line l. The compact convexity of the set C will
follow from Theorem 3 as soon as we find a locally compact set C̃ ⊂ R2 such that C ⊂ C̃
and C ∩ l = C̃ ∩ l.

Let B be the boundary of the set C ∩ l in l. It is clear that |B| ≤ 2. For every point
b ∈ B use the geometric form of the Hahn-Banach Theorem to find a closed half-plane Pb
such that C ⊂ Pb and b belongs to the boundary line Lb of Pb. Write the line Lb as the
disjoint union Lb = L0

b ∪ L1
b of two closed half-lines with L0

b ∩ L1
b = {b}. If b ∈ C, then put

P̃b = Pb. If b /∈ C, then Lib ∩ C = ∅ for some i ∈ {0, 1} (by the convexity of C). In this case
let P̃b = Pb \ Lib. In both the cases the set P̃b is locally compact. The same is true for the
intersection C̃ =

⋂
b∈B P̃b. It is clear that C ⊂ C̃ and C̃ ∩ l = C ∩ l.

In the sequel we shall also need the Infinite Sum Theorem:

Theorem 4. A convex normal subspace C of a linear topological space L is compactly convex
if C is the union of an increasing sequence (Cn)n∈ω of closed compactly convex subsets of C
such that each set Cn lies in the interior of Cn+1 and has compact boundary ∂Cn in C.

Proof. For every n ∈ ω the compact convexity of Cn yields a continuous compact-valued
map Φn : Cn → exp(C) such that [x, y] ⊂ Φn(x) ∪ Φn(y) for all x, y ∈ Cn. For n < 0 we put
Cn = ∅.
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Using Lemma 1, construct a continuous compact-valued function Φ: C → exp(C) such
that for every n ∈ ω and x ∈ Cn \ Cn−1 the following conditions are satisfied:

1. Φ(x) ⊃ Φn+1(x); 2. Φ(x) ⊃ Φn+1(∂Cn ∪ ∂Cn−1); 3. Φ(x) ⊃ [∂Ck−1, ∂Ck] for all
k < n.

We claim that Φ witnesses the compact convexity of X. Take any two points x, y ∈ C
and find numbers k, n ∈ ω with x ∈ Ck \Ck−1 and y ∈ Cn \Cn−1. Without loss of generality,
k ≤ n. We need to prove that [x, y] ⊂ Φ(x) ∪ Φ(y). Observe that for every i ∈ ω with
k ≤ i < n the intersection of the interval [x, y] with the boundary ∂Ci contains some point
zi. Taking into account the three properties of the map Φ we conclude that

[x, y] = [x, zk] ∪

(
n−1⋃
i=k+1

[zi−1, zi]

)
∪[zn−1, y] ⊂ Φk+1(x) ∪ Φk+1(∂Ck)∪

∪

(
n−1⋃
i=k+1

[∂Ci−1, ∂Ci]

)
∪Φn+1(∂Cn−1) ∪ Φn+1(y) ⊂ Φ(x) ∪ Φ(y).

5. Proof of Main Theorem 1. Let C be a convex subset of the plane and C be its closure.
If C is locally compact, then C is compactly convex by Proposition 1.

So, we can assume that C is not locally compact and consider the set N = {c ∈ C : C
is not locally compact at c}. If the set N is bounded, then we can write C as the union
C = C0∪C1∪C2∪C3 of closed convex subsets of C such that C0 ⊃ N is bounded, C1, C2, C3

are locally compact and
⋃n
i=0Ci are convex for n ≤ 3:

�
�

�
�
�

C0 ⊃ N

C3

C1 C2

By Lemma 2, the set C0 is compactly convex being bounded and by Proposition 1, the
convex locally compact sets C1, C2, C3 are compactly convex. Applying Corollary 1 three
times we conclude that the sets C0∪C1, (C0∪C1)∪C2 and finally C = ((C0∪C1)∪C2)∪C3

are compactly convex.
Next, we consider the case of unbounded N . In this case C is two-dimensional and has

infinite boundary ∂C. Shifting C, if necessary, we can assume that zero is an interior point
of C. Consider the convex cone Cone(C) = {~v ∈ R2 : [0,+∞)~v ⊂ C} of C. We claim that
Cone(C) is unbounded and contains no line. Indeed, assuming that conv(C) is bounded we
would conclude that the sets C ⊃ N are bounded, which is not the case. Assuming that
Cone(C) contains some line, we would get that C is either a half-plane or a strip. In both
the cases, N would be bounded.

Hence the cone Cone(C) is unbounded and contains no line. So by an affine transformation
of the plane we can reduce the problem to the case [0,∞)×{0} ⊂ Cone(C) ⊂ {(x, y) : |y| ≤
x}. The real line R×{0} divides C into two closed convex subsets C− = {(x, y) ∈ C : y ≤ 0}
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and C+ = {(x, y) ∈ C : y ≥ 0}. According to the Sum Theorem 3 it suffices to verify that
both sets C− and C+ are compactly convex.

If the set N∩C+ is bounded, then we can prove the compact convexity of C+ decomposing
it into four convex pieces, one of which is bounded and the other locally compact.

If N ∩C+ is not bounded, then we can find a sequence {(xn, yn)}∞n=1 ∈ N ∩C+ tending to
infinity and such that 0 < xn < xn+1 for all n. Consider the sets Cn = {(x, y) ∈ C+ : x ≤ xn},
n ∈ ω, and observe that (Cn)n∈ω is an increasing sequence of bounded closed convex subsets
of C+ with compact boundaries in C such that each Cn lies in the interior of Cn+1 in C.
By Lemma 2, each set Cn, being bounded, is compactly convex. Applying the Infinite Sum
Theorem 4, we conclude that the set C+ is compactly convex as well.

The proof of the compact convexity of the set C− is analogous.

6. Compactly convex sets in higher dimensional spaces. In this section we investigate
compactly convex sets in general linear topological spaces. In some cases the requirement
of compact convexity can be weakened to the upper compact convexity. We define a convex
subset C of a linear topological space L to be upper compactly convex if there is an upper-
semi-continuous compact-valued map Φ: C → exp(C) such that [x, y] ⊂ Φ(x) ∪ Φ(y). It is
clear that each compactly convex set is upper compactly convex. On the other hand, the
space constructed in Example 1 is not upper compactly convex.

Proposition 2. If X is an upper compactly convex subset of a linear topological space L,
then for any point x ∈ X there are a neighborhood V ⊂ X of x, a point z ∈ X and a compact
subset K ⊂ X such that (V + z)/2 ⊂ K.

Proof. Let Φ: X → exp(X) be an upper-semi-continuous map such that [y, z] ⊂ Φ(y)∪Φ(z)
for all y, z ∈ X. If X+x

2
⊂ Φ(x), then we put V = X, z = x, and K = Φ(x).

If X+x
2
6⊂ Φ(x), then take any point z ∈ X with z+x

2
/∈ Φ(x) and let K = Φ(z). Since Φ(x)

is compact, there is a neighborhood U ⊂ L of the origin such that z+x+U
2
∩ (Φ(x) +U) = ∅.

The upper semi-continuity of Φ yields the existence of a neighborhood V ⊂ X of x such
that Φ(y) ⊂ Φ(x) + U for all y ∈ V . Moreover, we can take V so small that V ⊂ x + U .
Then for every y ∈ V the point z+y

2
∈ z+x+U

2
does not belong to Φ(y) ⊂ Φ(x) + U . On the

other hand, the interval [y, z] lies in Φ(z) ∪ Φ(y) and hence z+y
2
∈ Φ(z) = K which yields

the desired inclusion z+V
2
⊂ K.

Corollary 2. An upper compactly convex subset X of a linear topological space L has
metrizable closure iff each compact subset of X is metrizable.

Proof. The “only if” part is trivial. To prove the “if” part, assume that each compact subset
of X is metrizable. We need to show that the closure X of X in L is metrizable. After
a suitable shift of X we can assume that the origin of L belongs to X. Proposition 2 yields
the existence of a neighborhood V ⊂ X of the origin, a point z ∈ X, and a compact subset
K ⊂ X such that V+z

2
⊂ K. The set K, being a compact subset of X, is metrizable. Then so

is the set A = 2K−z and its subsets V and V , where V stands for the closure of V in L. Let
Ṽ be an open subset of X such that Ṽ ∩X = V . The density of X in X implies that Ṽ ⊂ V .
Since Ṽ is an open neighborhood of the origin in X, for every point x ∈ X there is a positive
integer n with x

n
∈ Ṽ . Now the continuity of multiplication by a real number, yields the

existence of a neighborhood W ⊂ X such that 1
n
W ⊂ Ṽ ⊂ V ⊂ A. Since A is metrizable, so

is the neighborhood W of x. This shows that the space X is locally metrizable. Moreover,
we also obtain X ⊂

⋃
n∈N nA. Since A is metrizable and compact, the space

⋃
n∈N nA has
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countable network of the topology and so does its subspace X. Since spaces with countable
network are Lindelöf and thus paracompact, we conclude that the space X is paracompact.
Being locally metrizable, this space is metrizable according to [5, 5.4.A].

Corollary 3. The closure of each upper compactly convex set X in a linear topological
space L is locally compact.

Proof. After a suitable shift of X we can assume that the origin of L belongs to X. Repeating
the argument of the proof of Corollary 2, we can find a neighborhood V ⊂ X of the origin
having compact closure K = V in L. This shows that X is locally compact at the origin.
The continuity of multiplication by real numbers implies that for every point x ∈ X there
is a closed neighborhood W ⊂ X and a number n ∈ N such that 1

n
W ⊂ V and thus

W ⊂ nV ⊂ nV = nK. Being a closed subset of the compact space nK, the neighborhood
W is compact, witnessing that X is locally compact at x.

Corollary 4. For a closed convex subset X of a linear topological space the following
conditions are equivalent:

1) X is compactly convex;

2) X is upper compactly convex;

3) X is locally compact.

Proof. The implication (1) ⇒ (2) is trivial and (2) ⇒ (3) follows from Corollary 3. The
implication (3)⇒ (1) will follow from Proposition 1 and the following known lemma.

Lemma 3. Each closed convex locally compact subset X of a linear topological space L is
σ-compact.

Proof. After a suitable shift we can assume that the origin of L belongs to X. The local
compactness of X yields the existence of a compact neighborhood K ⊂ X of the origin. For
every x ∈ X the sequence (x

n
)∞n=1 tends to zero, consequently, x

n
∈ K for some n ∈ N. This

shows that X ⊂
⋃∞
n=1 nK is σ-compact, being a closed subspace of the σ-compact space⋃

n∈N nK.

A convex subsetX of a linear topological space L is called strongly convex if tx+(1−t)y ∈
X for any (x, y, t) ∈ X × X̄ × (0, 1]. Let us note that a convex set X is strongly convex if
the boundary ∂X of X in L contains no non-degenerate interval.

Theorem 5. For a strongly convex set X of a linear topological space L the following
conditions are equivalent:

1) X is compactly convex;

2) X is upper compactly convex;

3) the closure of X in L is locally compact.

Proof. The implication (1)⇒ (2) is trivial while (2)⇒ (3) follows from Corollary 3. To prove
that (3)⇒ (1), assume that X ⊂ L is a strongly convex set with locally compact closure X̄
in L. By Lemma 3, the set X̄ is σ-compact and hence can be written as the countable union
X̄ =

⋃∞
n=0 Xn of an increasing sequence of compact subsets of X̄ such that each Xn lies in

the interior of Xn+1. Let Xn = ∅ for n < 0.
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For every k ≤ m we use the compactness of the sets Xk, Xm to find a real number
εk,m ∈ (0, 1] such that

{(1− t)x+ ty : x ∈ Xk, y ∈ Xm, 0 ≤ t ≤ εk,m} ⊂ Xk+1.

The square X̄2 is σ-compact and thus paracompact. This allows us to find a continuous
function f : X̄2 → (0, 1) such that

• f(x, y) ≤ εk,m
m

for any k ≤ m− 2 and points x ∈ Xk \Xk−1, y ∈ Xm \Xm−1;

• f(x, y) + f(y, x) = 1 for all x, y ∈ X̄.

For every point x ∈ X̄ consider the set

Φ(x) = {(1− t)x+ ty : y ∈ X̄, 0 ≤ t ≤ f(x, y)}.

We claim that this set is compact. Observe that Φ(x) =
⋃∞
n=1 Φn(x) where for every n ∈ N

the set Φn(x) = {ty + (1− t)x : y ∈ Xn, 0 ≤ t ≤ f(x, y)} is compact.
Take any cover U of Φ(x) by open subsets of L and find an open set Ux ∈ U containing

the point x. Let k ∈ ω be such that x ∈ Xk \ Xk−1. By the compactness of Xk+1 there is
a number n > k such that (1 − t)x + tXk+1 ⊂ Ux for every positive t ≤ 1

n
. We claim that

Φ(x) \Φn(x) ⊂ Ux. Indeed, take any point z ∈ Φ(x) \Φn(x) and write it as z = (1− t)x+ ty
for some y ∈ X̄ and 0 ≤ t ≤ f(x, y). Find m ∈ ω with y ∈ Xm \Xm−1. Taking into account
that z /∈ Φn(x) we conclude that m > n > k. In this case t ≤ f(x, y) ≤ εk,m

m
and hence

mt ≤ εk,m. The choice of the number εk,m implies that (1−mt)x+ (mt)y ∈ Xk+1. Now the
choice of the number n yields

(1− t)x+ ty =
(

1− 1

m

)
x+

1

m
((1−mt) +mty) ∈

(
1− 1

m

)
x+

1

m
Xk+1 ⊂ Ux.

Thus Φ(x) ⊂ Ux ∪Φn(x). Now the compactness of Φn(x) guarantees the existence of a finite
subfamily V ⊂ U with Φn(x) ⊂

⋃
V . Then V ∪ {Ux} ⊂ U is a finite subcover of Φ(x)

witnessing the compactness of Φ(x).
Therefore, the correspondence Φ: x 7→ Φ(x) determines a compact-valued function Φ:

X̄ → exp(X̄). Modifying the preceding argument one can check that this function is conti-
nuous with respect to the Vietoris topology on exp(X̄).

The condition [x, y] ⊂ Φ(x) ∪ Φ(y) for all x, y ∈ X̄ implies from the equality f(x, y) +
f(y, x) = 1. Finally, the strict convexity of X guarantees that Φ(x) ⊂ X for all x ∈ X.
Thus the continuous function Φ|X : X → exp(X) witnesses that the set X is compactly
convex.

Question 3. Is every upper compactly convex subset of Rn compactly convex?

Looking at the preceding statements and known examples of compactly convex sets one
can suggest that they are near to being locally compact. The following example shows that
this is not true. It relies on the construction of the space P (K) of probability measures on
a compact Hausdorff space K. We recall that P (K) = {µ ∈ C∗(K) : µ ≥ 0, µ(1K) = 1} is
the subset of the dual Banach space C∗(K), endowed with the ∗-weak topology. Here C(K)
is the Banach space of all real-valued continuous functions on K and 1K is the constant
unit function on K. By the famous Riesz Representation Theorem elements of P (K) can be
viewed as regular Borel probability measures on K. Under such an identification the ∗-weak
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topology on P (K) is generated by the subbase {µ ∈ P (K) : µ(U) > a} where a is a real
number and U runs over open subsets of K.

A subset X of a linear topological space L is ∞-convex if for any bounded sequence
(xn)∞n=1 ⊂ X and any sequence (tn)∞n=1 of positive real numbers with

∑∞
n=1 tn = 1 the series∑∞

n=1 tnxn converges to a point from the set X, see [2]. We recall that a subset B of a linear
topological space L is bounded if for any open neighborhood U of the origin in L there is
a number n ∈ N such that B ⊂ nU = {nx : x ∈ U}. Using the Hahn-Banach Theorem one
can show that each convex subset of a finite-dimensional linear topological space is∞-convex.

Example 2. For a non-empty subset A of a compact Hausdorff space K the subset C =
{µ ∈ P (K) : ∃a ∈ A with µ({a}) > 0} has the following properties:

1) C is strongly convex, ∞-convex and dense in P (K);
2) C is compactly convex;
3) C contains a closed subspace homeomorphic to A;
4) each compact countable subset of C lies in a compact convex subset of C;
5) if A = K, then C is σ-compact;
6) if K contains no isolated point, then C is a dense subspace of the first Baire category

in P (K).

Proof. 1. The strong convexity, ∞-convexity and density of C in P (K) follows immediately
from the definition of C.

2. Applying Theorem 5 we get that C is compactly convex.
3. Identifying each point x ∈ K with the Dirac measure δx concentrated at x, we get

an embedding of K into P (K). Then the intersection K ∩ C is homeomorphic to A.
4. The forth item follows from the∞-convexity of C and the well-known fact stating that

the closed convex hull conv(B) of a countable compact subset B = {bn}∞n=1 in a compact
convex subset A of a locally convex space coincides with the set

conv(B) =

{
∞∑
n=1

tnbn : tn ≥ 0,
∞∑
n=1

tn = 1

}
of all ∞-convex combinations of elements of B.

5. Assuming that A = K, we shall show that the set C is σ-compact. Indeed, in this case
C =

⋃∞
n=1 Fn, where Fn = {µ ∈ P (K) : ∃x ∈ K with µ({x}) ≥ 1

n
}. Let us show that each

set Fn is closed in P (K). Take any measure µ in the closure of Fn in P (K). Let B be the
family of all open neighborhoods of µ in P (K). For each U ∈ B find a measure µU ∈ Fn ∩U
and a point xU ∈ K such that µU({xU}) ≥ 1/n. By the compactness of K × P (K), the set
{(xU , µU) : U ∈ B} has a cluster point (x, µ) for some x ∈ X.

We claim that µ({x}) ≥ 1/n. Assuming that µ({x}) < 1/n by the regularity of µ, we can
find a closed neighborhood W of x in K with µ(W ) < 1/n. Then µ(K \W ) > 1− 1/n and
U = {η ∈ P (K) : η(K \W ) > 1 − 1/n} is an open neighborhood of µ in P (K). The choice
of the cluster point (x, µ) implies that the neighborhood W ×U of (x, µ) contains some pair
(xV , µV ). Then µV (W ) ≥ µV ({xV }) ≥ 1/n and thus µV /∈ U , which is a contradiction.

This contradiction shows that each Fn is closed in P (K) and consequently, C =
⋃∞
n=1 Fn

is σ-compact.
6. Now assume that K contains no isolated point. In this case the sets Fn are nowhere

dense and consequently, the space C ⊂
⋃∞
n=1 Fn is of the first Baire category.
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7. Enlarging compactly convex sets. In this section we shall show that each metri-
zable compactly convex set in a linear topological space can be enlarged to a topologically
complete compactly convex set. A topological space is called topologically complete if it is
homeomorphic to a complete metric space.

Theorem 6. Let X be a metrizable compactly convex set in a linear topological space L.
Then for any Gδ-subset G ⊂ L containing X there is a topologically complete compactly
convex set C ⊂ G containing X.

Proof. Let Φ: X → exp(X) be a continuous compact-valued map witnessing the compact
convexity of X. By Corollaries 2, 3, the set X has metrizable locally compact closure X in
L. Let G0 = G∩X. The space G0 being a Gδ-subset of the metrizable locally compact space
X is topologically complete and so is the hyperspace exp(G0). By [5, 4.3.20], the map

Φ: X → exp(X) ⊂ exp(G0)

admits a continuous extension Φ: G1 → exp(G0) defined on some Gδ-subset G1 ⊂ G0.
The hyperspace exp(G1), being topologically complete, is a Gδ-set in exp(G0). Then

the continuity of Φ guarantees that the preimage G2 = Φ
−1

(exp(G1)) is a Gδ-set in G1

containing X. Proceeding by induction, we can define a decreasing sequence (Gn)∞n=1 of
Gδ-subsets of X such that

X ⊂ Gn+1 = Φ
−1

(exp(Gn)) for all n.

Then the intersection C =
⋂∞
n=1Gn is a Gδ-subset of G0 ⊂ G that contains X and has the

property Φ(C) ⊂ exp(C).
Using the continuity of Φ and the density of X in C one can check that [x, y] ⊂ Φ(x) ∪

Φ(y) ⊂ C for every x, y ∈ C. This means that the set C is compactly convex and the function
Φ|C witnesses that.

This proposition allows as to construct another example of a convex subset of R3 that
fails to be compactly convex.

Example 3. For any disjoint dense subsets T0, T1 in the circle T the convex subset

X = D × [0, 1] ∪ T0 × {0} ∪ T1 × {1}

of C×R fails to be compactly convex because it cannot be enlarged to a convex Gδ-set lying
in the Gδ-subset G = D × [0, 1] ∪ T× {0, 1}.

Here as before T = {z ∈ C : |z| = 1} is the unit circle and D = {z ∈ C : |z| < 1} is the
open unit disk on the complex plane C.

8. Variations of the compact convexity. In the sequel by conv(F ) we denote the convex
hull of a subset F of a linear space. The following proposition shows that the compactly
convex space admits a self-enforcement.

Proposition 3. If X is a compactly convex set, then for every n ∈ N there is a continuous
compact-valued map Φ: X → exp(X) such that conv(F ) ⊂

⋃
x∈F Φ(x) for any subset F ⊂ X

of size |F | ≤ n.
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Proof. This proposition will be proved by induction on n. For n = 2 it follows from the
definition of the compact convexity. Assume that for some n ≥ 2 there is a continuous
compact-valued map Φ: X → exp(X) such that

conv(F ) ⊂
⋃
x∈F

Φ(x)

for any subset F ⊂ X of size |F | ≤ n. The map Φ induces another continuous compact-valued
map

Ψ: X → exp(X), Ψ: x 7→ Φ(Φ(x)) =
⋃

y∈Φ(x)

Φ(y).

We claim that
conv(F ) ⊂

⋃
x∈F

Ψ(x)

for any subset F ⊂ X of size |F | ≤ n + 1. Take any point z ∈ conv(F ) and write it as
z = (1− t)x+ ty for some t ∈ [0, 1], x ∈ F and y ∈ conv(F \ {x}). Then

z ∈ [x, y] ⊂ Φ(x) ∪ Φ(y) ⊂ Ψ(x) ∪ Φ(conv(F \ {x})) ⊂

⊂ Ψ(x) ∪ Φ

( ⋃
v∈F\{x}

Φ(v)

)
= Ψ(x) ∪

⋃
v∈F\{x}

Φ(Φ(v)) =
⋃
v∈F

Ψ(v).

In the finite-dimensional case Proposition 3 admits further enforcement.

Corollary 5. If C is a finite-dimensional compactly convex set, then there is a continuous
compact valued map Φ: C → exp(C) such that conv(F ) ⊂

⋃
x∈F Φ(x) for all F ⊂ C.

Proof. This corollary follows from Proposition 3 and Carathéodory Theorem ([3]) according
to which for every F ⊂ Rn and x ∈ conv(F ) there is a subset E ⊂ F of size |E| ≤ n + 1
with x ∈ conv(E).

Finally, let us pose some questions on the structure of infinite-dimensional compactly
convex sets.

Question 4. Let C be a compactly convex set in a (locally convex) linear topological space.

1) Is any closed convex subset of C compactly convex?
2) Is there a continuous map Φ: C → exp(C) such that conv(F ) ⊂

⋃
x∈F Φ(x) for all

(countable) subsets F ⊂ C?
3) Is there a continuous map Φ: C → exp(C) such that all values Φ(x) are convex and

[x, y] ⊂ Φ(x) ∪ Φ(y)?
4) Is C ∞-convex?
5) Does each compact countable subset K of C lie in a compact convex subset of C?

Remark that all these questions have affirmative answers if C is finite-dimensional.
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